On Faltings heights of abelian varieties with complex multiplication

نویسندگان

  • Xinyi Yuan
  • XINYI YUAN
چکیده

This expository article introduces some conjectures and theorems related to the Faltings heights of abelian varieties with complex multiplication. The topics include the Colmez conjecture, the averaged Colmez conjecture, and the André–Oort conjecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fixed point formula of Lefschetz type in Arakelov geometry IV: the modular height of C.M. abelian varieties

We give a new proof of a slightly weaker form of a theorem of P. Colmez ([C2, Par. 2]). This theorem (Corollary 5.8) gives a formula for the Faltings height of abelian varieties with complex multiplication by a C.M. field whose Galois group over Q is abelian; it reduces to the formula of Chowla and Selberg in the case of elliptic curves. We show that the formula can be deduced from the arithmet...

متن کامل

Gabber’s Lemma

For our study of Faltings’ heights on abelian varieties over number fields, it will be convenient if we can compactify the “moduli space” of g-dimensional abelian varieties (over Z) such that the universal abelian scheme extends to a semi-abelian scheme over the compactification. The reason for this wish is that ideally we’d like to set up a theory for which the Faltings height of an abelian va...

متن کامل

Periods of Drinfeld modules and local shtukas with complex multiplication

Colmez [Col93] conjectured a product formula for periods of abelian varieties over number fields with complex multiplication and proved it in some cases. His conjecture is equivalent to a formula for the Faltings height of CM abelian varieties in terms of the logarithmic derivatives at s = 0 of certain Artin L-functions. In a series of articles we investigate the analog of Colmez’s theory in th...

متن کامل

Chow-künneth Decomposition for Universal Families over Picard Modular Surfaces

We discuss conditions for the existence of an absolute ChowKünneth decomposition for complete degenerations of families of Abelian threefolds with complex multiplication over a particular Picard Modular Surface studied by Holzapfel. In addition to the work of Gordon, Hanamura and Murre we use Relatively Complete Models in the sense of Mumford-Faltings-Chai of Picard Modular Surfaces in order to...

متن کامل

Complex Multiplication, Rationality and Mirror Symmetry for Abelian Varieties

We show that complex multiplication on abelian varieties is equivalent to the existence of a constant rational Kähler metric. We give a sufficient condition for a mirror of an abelian variety of CM-type to be of CM-type. We also study the relationship between complex multiplication and rationality of a toroidal lattice vertex algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017